1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use crate::wire::marshal::MarshalContext;
use crate::wire::unmarshal::UnmarshalContext;
use crate::{Marshal, Signature, Unmarshal};
use std::os::unix::io::RawFd;

use std::sync::atomic::AtomicI32;
use std::sync::Arc;

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DupError {
    Nix(nix::Error),
    AlreadyTaken,
}

#[derive(Debug)]
struct UnixFdInner {
    inner: AtomicI32,
}
impl Drop for UnixFdInner {
    fn drop(&mut self) {
        if let Some(fd) = self.take() {
            nix::unistd::close(fd).ok();
        }
    }
}

impl UnixFdInner {
    /// -1 seems like a good 'invalid' state for the atomici32
    /// -1 is a common return value for operations that return FDs to signal an error occurance.
    const FD_INVALID: RawFd = -1;

    /// This is kinda like Cell::take it takes the FD and resets the atomic int to FD_INVALID which represents the invalid / taken state here.
    fn take(&self) -> Option<RawFd> {
        // load fd and see if it is already been taken
        let loaded_fd: RawFd = self.inner.load(std::sync::atomic::Ordering::SeqCst);
        if loaded_fd == Self::FD_INVALID {
            None
        } else {
            //try to swap with FD_INVALID
            let swapped_fd = self.inner.compare_exchange(
                loaded_fd,
                Self::FD_INVALID,
                std::sync::atomic::Ordering::SeqCst,
                std::sync::atomic::Ordering::SeqCst,
            );
            //  If swapped_fd == fd then we did a sucessful swap and we actually took the value
            if let Ok(taken_fd) = swapped_fd {
                Some(taken_fd as i32)
            } else {
                None
            }
        }
    }

    /// This is kinda like Cell::get it returns the FD, FD_INVALID represents the invalid / taken state here.
    fn get(&self) -> Option<RawFd> {
        let loaded = self.inner.load(std::sync::atomic::Ordering::SeqCst);
        if loaded == Self::FD_INVALID {
            None
        } else {
            Some(loaded as RawFd)
        }
    }

    /// Dup the underlying FD
    fn dup(&self) -> Result<Self, DupError> {
        let fd = match self.get() {
            Some(fd) => fd,
            None => return Err(DupError::AlreadyTaken),
        };
        match nix::unistd::dup(fd) {
            Ok(new_fd) => Ok(Self {
                inner: AtomicI32::new(new_fd),
            }),
            Err(e) => Err(DupError::Nix(e)),
        }
    }
}

/// UnixFd is a wrapper around RawFd, to ensure that opened FDs are closed again, while still having the possibility of having multiple references to it.
///
/// "Ownership" as in responsibility of closing the FD works as follows:
/// 1. You can call take_raw_fd(). At this point UnixFd releases ownership. You are now responsible of closing the FD.
/// 1. You can call get_raw_fd(). This will not release ownership, UnixFd will still close it if no more references to it exist.
///
/// ## UnixFds and messages
/// 1. When a UnixFd is **marshalled** rustbus will dup() the FD so that the message and the original UnixFd do not depend on each others lifetime. You are free to use
/// or close the original one.
/// 1. When a UnixFd is **unmarshalled** rustbus will **NOT** dup() the FD. This means if you call take_raw_fd(), it is gone from the message too! If you do not want this,
/// you have to call dup() and then get_raw_fd() or take_raw_fd()
#[derive(Clone, Debug)]
pub struct UnixFd(Arc<UnixFdInner>);
impl UnixFd {
    pub fn new(fd: RawFd) -> Self {
        UnixFd(Arc::new(UnixFdInner {
            inner: AtomicI32::new(fd),
        }))
    }
    /// Gets a non-owning `RawFd`. If `None` is returned.
    /// then this UnixFd has already been taken by somebody else
    /// and is no longer valid.
    pub fn get_raw_fd(&self) -> Option<RawFd> {
        self.0.get()
    }

    /// Gets a owning `RawFd` from the UnixFd.
    /// Subsequent attempt to get the `RawFd` from
    /// other `UnixFd` referencing the same file descriptor will
    /// fail.
    pub fn take_raw_fd(self) -> Option<RawFd> {
        self.0.take()
    }

    /// Duplicate the underlying FD so you can use it as you will. This is different from just calling
    /// clone(). Clone only makes a new ref to the same underlying FD.
    pub fn dup(&self) -> Result<Self, DupError> {
        self.0.dup().map(|new_inner| Self(Arc::new(new_inner)))
    }
}
/// Allow for the comparison of `UnixFd` even after the `RawFd`
/// has been taken, to see if they originally referred to the same thing.
impl PartialEq<UnixFd> for UnixFd {
    fn eq(&self, other: &UnixFd) -> bool {
        Arc::ptr_eq(&self.0, &other.0) || self.get_raw_fd() == other.get_raw_fd()
    }
}

// These two impls are just there so that params::Base can derive Eq and Hash so they can be used as Keys
// in dicts. This does not really make sense for unixfds (why would you use them as keys...) but the
// contracts for Eq and Hash should be fulfilled by these impls.
impl Eq for UnixFd {}
impl std::hash::Hash for UnixFd {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        state.write_i32(self.get_raw_fd().unwrap_or(0));
    }
}

impl Signature for UnixFd {
    fn signature() -> crate::signature::Type {
        crate::signature::Type::Base(crate::signature::Base::UnixFd)
    }
    fn alignment() -> usize {
        Self::signature().get_alignment()
    }
}
impl Marshal for UnixFd {
    fn marshal(&self, ctx: &mut MarshalContext) -> Result<(), crate::Error> {
        crate::wire::util::marshal_unixfd(self, ctx)
    }
}
impl Signature for &dyn std::os::unix::io::AsRawFd {
    fn signature() -> crate::signature::Type {
        crate::signature::Type::Base(crate::signature::Base::UnixFd)
    }
    fn alignment() -> usize {
        Self::signature().get_alignment()
    }
}
impl Marshal for &dyn std::os::unix::io::AsRawFd {
    fn marshal(&self, ctx: &mut MarshalContext) -> Result<(), crate::Error> {
        let fd = self.as_raw_fd();
        let new_fd = nix::unistd::dup(fd)
            .map_err(|e| crate::Error::Marshal(crate::wire::marshal::Error::DupUnixFd(e)))?;
        ctx.fds.push(UnixFd::new(new_fd));

        let idx = ctx.fds.len() - 1;
        ctx.align_to(Self::alignment());
        crate::wire::util::write_u32(idx as u32, ctx.byteorder, ctx.buf);
        Ok(())
    }
}

impl<'buf, 'fds> Unmarshal<'buf, 'fds> for UnixFd {
    fn unmarshal(
        ctx: &mut UnmarshalContext<'fds, 'buf>,
    ) -> crate::wire::unmarshal::UnmarshalResult<Self> {
        let (bytes, idx) = u32::unmarshal(ctx)?;

        if ctx.fds.len() <= idx as usize {
            Err(crate::wire::unmarshal::Error::BadFdIndex(idx as usize))
        } else {
            let val = &ctx.fds[idx as usize];
            Ok((bytes, val.clone()))
        }
    }
}

#[test]
fn test_fd_send() {
    let x = UnixFd::new(nix::unistd::dup(1).unwrap());
    std::thread::spawn(move || {
        let _x = x.get_raw_fd();
    });

    let x = UnixFd::new(nix::unistd::dup(1).unwrap());
    let fd = crate::params::Base::UnixFd(x);
    std::thread::spawn(move || {
        let _x = fd;
    });
}

#[test]
fn test_unix_fd() {
    let fd = UnixFd::new(nix::unistd::dup(1).unwrap());
    let _ = fd.get_raw_fd().unwrap();
    let _ = fd.get_raw_fd().unwrap();
    let _ = fd.clone().take_raw_fd().unwrap();
    assert!(fd.get_raw_fd().is_none());
    assert!(fd.take_raw_fd().is_none());
}

#[test]
fn test_races_in_unixfd() {
    let fd = UnixFd::new(nix::unistd::dup(1).unwrap());
    let raw_fd = fd.get_raw_fd().unwrap();

    const NUM_THREADS: usize = 20;
    const NUM_RUNS: usize = 100;

    let barrier = std::sync::Arc::new(std::sync::Barrier::new(NUM_THREADS + 1));

    let result = std::sync::Arc::new(std::sync::Mutex::new(vec![false; NUM_THREADS]));

    for _ in 0..NUM_RUNS {
        for idx in 0..NUM_THREADS {
            let local_fd = fd.clone();
            let local_result = result.clone();
            let local_barrier = barrier.clone();
            std::thread::spawn(move || {
                // wait for all other threads
                local_barrier.wait();
                if let Some(taken_fd) = local_fd.take_raw_fd() {
                    assert_eq!(raw_fd, taken_fd);
                    local_result.lock().unwrap()[idx] = true;
                }
                // wait for all other threads to finish so the main thread knows when to collect the results
                local_barrier.wait();
            });
        }

        // wait for all threads to be ready to take the fd all at once
        barrier.wait();
        // wait for all threads to finish
        barrier.wait();
        let result_iter = result.lock().unwrap();
        assert_eq!(result_iter.iter().filter(|b| **b).count(), 1)
    }
}

#[test]
fn test_unixfd_dup() {
    let fd = UnixFd::new(nix::unistd::dup(1).unwrap());
    let fd2 = fd.dup().unwrap();
    assert_ne!(fd.get_raw_fd().unwrap(), fd2.get_raw_fd().unwrap());

    let _raw = fd.clone().take_raw_fd();
    assert_eq!(fd.dup(), Err(DupError::AlreadyTaken));
}